Novel peptide inhibitors of Leishmania gp63 based on the cleavage site of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein.

نویسندگان

  • Sally Corradin
  • Adriana Ransijn
  • Giampietro Corradin
  • Jacques Bouvier
  • Maria Belen Delgado
  • Jimena Fernandez-Carneado
  • Jeremy C Mottram
  • Guy Vergères
  • Jacques Mauël
چکیده

The zinc metalloprotease gp63 (leishmanolysin; promastigote surface protease) is expressed at high density at the surface of Leishmania promastigotes. Efficient non-toxic inhibitors of gp63 do not exist, and its precise role in parasite physiology remains unknown. MARCKS (myristoylated alanine-rich C kinase substrate) and MARCKS-related protein (MRP; MacMARCKS) are protein kinase C substrates in various cells, including macrophages. We reported previously that MRP is an excellent substrate for gp63. A major cleavage site was identified within the MRP effector domain (ED), a highly basic 24-amino-acid sequence, and the synthetic ED peptide (MRP(ED)) was shown to inhibit MRP hydrolysis. In the present study, MRP cleavage was used as an assay to measure the capacity of various MRP or MARCKS ED peptides to block gp63 activity. On a molar basis, MRP(ED) inhibited gp63 to a greater extent than two previously described gp63 inhibitors, o -phenanthroline and benzyloxycarbonyl-Tyr-Leu-NHOH. MARCKS(ED) analogues containing modifications in the gp63 consensus cleavage site showed significant differences in inhibitory capacity. As phosphorylation of ED serine residues prevented gp63-mediated MRP degradation, we synthesized a pseudophosphorylated peptide in which serine residues were substituted by aspartate (3DMRP(ED)). 3DMRP(ED) was a highly effective inhibitor of both soluble and parasite-associated gp63. Finally, MRP ED peptides were synthesized together with an N-terminal HIV-1 Tat transduction domain (TD) to obtain cell-permeant peptide constructs. Such peptides retained gp63 inhibitory activity and efficiently entered both macrophages and parasites in a Tat TD-dependent manner. These studies may provide the basis for developing potent cell-permeant inhibitors of gp63.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myristoylated alanine-rich C kinase substrate (MARCKS) is involved in myoblast fusion through its regulation by protein kinase Calpha and calpain proteolytic cleavage.

MARCKS (myristoylated alanine-rich C kinase substrate) is a major cytoskeletal protein substrate of PKC (protein kinase C) whose cellular functions are still unclear. However numerous studies have implicated MARCKS in the stabilization of cytoskeletal structures during cell differentiation. The present study was performed to investigate the potential role of Ca(2+)-dependent proteinases (calpai...

متن کامل

Inhibition of native and recombinant nicotinic acetylcholine receptors by the myristoylated alanine-rich C kinase substrate peptide.

A variety of peptide ligands are known to inhibit the function of neuronal nicotinic acetylcholine receptors (nAChRs), including small toxins and brain-derived peptides such as beta-amyloid(1-42) and synthetic apolipoproteinE peptides. The myristoylated alanine-rich C kinase substrate (MARCKS) protein is a major substrate of protein kinase C and is highly expressed in the developing and adult b...

متن کامل

Protein kinase C-mediated phosphorylation and calmodulin binding of recombinant myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein.

The myristoylated alanine-rich C kinase substrate (MARCKS) and the MARCKS-related protein (MRP) are members of a distinct family of protein kinase C (PKC) substrates that also bind calmodulin in a manner regulated by phosphorylation by PKC. The kinetics of PKC-mediated phosphorylation and the calmodulin binding properties of intact, recombinant MARCKS and MRP were investigated and compared with...

متن کامل

Myristoylation-dependent N-terminal cleavage of the myristoylated alanine-rich C kinase substrate (MARCKS) by cellular extracts.

The myristoylated alanine-rich C kinase substrate (MARCKS) has been proposed to regulate the plasticity of the actin cytoskeleton at its site of attachment to membranes. In macrophages, MARCKS is implicated in various cellular events including motility, adhesion and phagocytosis. In this report we show that macrophage extracts contain a protease which specifically cleaves human MARCKS, expresse...

متن کامل

Fibroblast Migration Is Regulated by Myristoylated Alanine-Rich C-Kinase Substrate (MARCKS) Protein

Myristoylated alanine-rich C-kinase substrate (MARCKS) is a ubiquitously expressed substrate of protein kinase C (PKC) that is involved in reorganization of the actin cytoskeleton. We hypothesized that MARCKS is involved in regulation of fibroblast migration and addressed this hypothesis by utilizing a unique reagent developed in this laboratory, the MANS peptide. The MANS peptide is a myristoy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 367 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2002